
ALGEBRA COMPREHENSIVE EXAMINATION
Spring 2024

Brookfield*, Mijares, Troyka

Directions: Answer 5 questions only. You must answer at least one from each of linear
algebra, groups, and synthesis. Indicate CLEARLY which problems you want us to grade—
otherwise, we will select which ones to grade, and they may not be the ones that you want
us to grade. Be sure to show enough work that your answers are adequately supported.

Notation: R is the set of real numbers; Z is the set of integers; C is the set of complex
numbers; GL(V ) is the group of invertible linear maps from a vector space V to itself;
GLn(F ) is the group of all invertible n × n matrices with entries in the field F ; SOn(F ) is
the subgroup of GLn(F ) consisting of all matrices that are orthogonal and have determinant
one.
Linear Algebra

(1) Let T : V → V be a linear transformation from a real vector space V to itself. Let
u1 and u2 be nonzero vectors in V such that T (u1) = u1 and T (u2) = 2u2. Show that
{u1, u2} is linearly independent. Answer: Suppose that c1u1 + c2u2 = 0 for some
c1, c2 ∈ R. Then 0 = T (0) = T (c1u1 + c2u2) = c1T (u1) + c2T (u2) = c1u1 + 2c2u2. We
now have linear equations c1u1 + c2u2 = 0 and c1u1 + 2c2u2 = 0. These can be solved
to give c1u1 = 0 and c2u2 = 0. Since u1 and u2 are nonzero, we get c1 = c2 = 0.

(2) (a) Prove that every matrix with entries from C has at least one eigenvalue in C.
(b) Give an example of a matrix with entries from R that does not have an eigenvalue

in R.
Answer: (a) Let A be a matrix with entries from C. Let f(x) = det(A − xI)

be the characteristic polynomial of A. By the fundamental theorem of algebra, every
polynomial with coefficients in C has a zero in C, so there exists λ ∈ C such that
f(λ) = 0. This λ is an eigenvalue of A.

(b)

(
0 −1
1 0

)
has no eigenvalues in R. We can see this geometrically: the matrix

is a quarter-turn rotation of R2, and no non-zero vector in R2 is a scalar multiple
of its quarter-turn rotation. We can also see this algebraically: the characteristic
polynomial is 1 + x2, which does not have a zero in R.

(3) Let V = Mn(R) be the vector space of n × n real matrices. Let I be the identity
n× n matrix. Prove that for all matrices A,B ∈ V the equation A ·B −B ·A = I is
impossible.

Answer: Need to prove
(i) the trace function tr :Mn(R)→ R given by

tr(A) = the trace of A

is linear (that is, it is a linear functional),
(ii) tr(A ·B) = tr(B · A), and
(iii) tr(A ·B −B · A) = tr(A ·B)− tr(B · A) = 0, but tr(I) 6= 0.

Groups

(1) Let H and K be subgroups of a group G such that G = HK. Show that the following
are equivalent:



(a) H ∩K = {e}
(b) Each element of g ∈ G can be written uniquely in the form g = hk with h ∈ H

and k ∈ K.
Answer: Suppose that H ∩K = {e} and g ∈ G. Since G = HK, we have g = hk

for some h ∈ H and k ∈ K, and it remains only to prove uniqueness.
Suppose that g = h1k1 = h2k2 with h1, h2 ∈ H and k1, k2 ∈ K. Then h−1

2 h1 = k2k
−1
1

is an element of H ∩ K. By assumption, h−1
2 h1 = k2k

−1
1 = e, and so h2 = h1 and

k2 = k1.
Conversely, suppose that (b) holds and g ∈ H ∩K. Then g = ge with g ∈ H and

e ∈ K and also g = eg with e ∈ H and g ∈ K, By the uniqueness of such expressions,
g = e.

(2) (a) Prove or disprove: For every finite group G, every element g ∈ G has finite
order.

(b) Prove or disprove: For every infinite group G, every non-identity element g ∈ G
has infinite order.
Answer: (a) The set {g, g2, g3, . . .}, being a subset of the finite group G, is

finite. Let n be its cardinality; then g, . . . , gn+1 cannot be n+ 1 distinct elements, so
there exist i, j such that i < j and gi = gj. Thus gj−i = 1, so g has finite order —
its order is at most j − i.

(b) There are many counterexamples, for instance Z×Z2 (under addition) in which
(0, 1) has order 2.

(3) Let G be a group. Recall that an automorphism of G is an isomorphism from G to
G.
(a) Fix a ∈ G, and define a map φa : G→ G by φa(g) = aga−1. Prove that φa is an

automorphism of G.
(b) Suppose H is a subgroup of G with the property that, for every automorphism

α of G, we have α(H) = H. Prove that H is a normal subgroup of G.
Answer: (a) If g, h ∈ G, then φa(gh) = agha−1 = (aga−1)(aha−1) = φa(g)φa(h),

so φa is a homomorphism. And φa is invertible because its inverse is φa−1.
(b) For all a ∈ G, we have φa(H) = H since φa is an automorphism. Thus

aHa−1 = H for all a ∈ G, so H is normal.

Synthesis

(1) Let F be a field, and define F ∗ = F \ {0}. It is a fact (you do not have to prove)
that F ∗ is a group under multiplication. Let V be a finite-dimensional vector space
over F . For each c ∈ F ∗, define φc : V → V by

φc(v) = c · v
(i.e., φc is scalar multiplication by c).
(a) For fixed c, prove that φc is an invertible linear map.
(b) Prove that the map Φ: F ∗ → GL(V ) given by Φ(c) = φc is a group homomor-

phism.
Answer: (a) φc(v + w) = c · (v + w) = c · v + c · w = φc(v) + φc(w).

φc(a · v) = c · (a · v) = a · (c · v) = a · φc(v).
That shows that φc is linear, and φc is invertible because its inverse is φ(c−1).
(b) φcd(v) = (cd) · v = c · (d · v) = φc(φd(v)). Thus φcd = φc ◦ φd.
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(2) Let G =

{(
1 + n −n
n 1− n

)
| n ∈ Z

}
.

(a) Prove that G is group under matrix multiplication.
(b) Prove that G and (Z,+) are isomorphic.

Answer: (a) Verify that(
1 + n −n
n 1− n

)
·
(

1 +m −m
m 1−m

)
=

(
1 + n+m −(n+m)
n+m 1− (n+m)

)
,

and therefore the multiplication is closed in G. It’s relatively easy to check the opera-

tion is associative (and this is true for matrix multiplication anyway. e =

(
1 0
0 1

)
is the identity element. And

(
1 + n −n
n 1− n

)−1

=

(
1− n n
−n 1 + n

)
. So, G is a

group.

Answer: (b) Define φ : Z → G by φ(n) =

(
1 + n −n
n 1− n

)
. Part of the work

in (a) shows that φ is an homomorphism. It’s obviously onto and Ker(φ) = {0}.
Thus G and Z are isomorphic.

(3) Let G be the subgroup of GL3(R) generated by the matrices

A =

0 0 1
1 0 0
0 1 0

 B =

0 −1 0
0 0 −1
1 0 0


(a) Is G contained in SO3(R)? Explain. Answer: Yes. Since detA = detB = 1

and AAt = BBt = I, both A and B are in SO3(R).
(b) Is G abelian? Explain. Answer: No. For example, AB 6= BA.

(c) Find an element ofG with order two. Answer: For example, AB =

1 0 0
0 −1 0
0 0 −1


has order two.

(d) Explain why G must have order 12 or greater. Answer: For example, since G
has elements of order 2 and 3, |G| is a multiple of 6. The only nonabelian group
of order 6, S3, has two elements of order 3 whereas G has at least four elements
of order three, namely, A, A2, B and B2. (In fact, G ∼= A4 and has order 12.)
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